
Improving Linux Block I/O
for Enterprise Workloads

Peter Wai Yee Wong, Badari Pulavarty, Shailabh Nagar, Janet Morgan,

Jonathan Lahr, Bill Hartner, Hubertus Franke, Suparna Bhattacharya

IBM Linux Technology Center

fwpeter,pbadari,nagar,janetinc,lahr,bhartner,frankehg@us.ibm.com, bsuparna@in.ibm.com

http://lse.sourceforge.net/

Abstract

The block I/O subsystem of the Linux kernel is one
of the critical components a�ecting the performance
of server workloads. Servers typically scale their I/O
bandwidth by increasing the number of attached
disks and controllers. Hence, the scalability of the
block I/O layer is also an important concern.

In this paper, we examine the performance of the 2.4
Linux kernel's block I/O subsystem on enterprise
workloads. We identify some of the major bottle-
necks in the block layer and propose kernel modi-
�cations to alleviate these problems in the context
of the 2.4 kernel. The performance impact of the
proposed patches is shown using a decision-support
workload, a microbenchmark, and pro�ling tools.
We also examine the newly rewritten block layer of
the 2.5 kernel to see if it addresses the performance
bottlenecks discovered earlier.

1 Introduction

Over the past few years, Linux has made remark-
able progress in becoming a server operating sys-
tem. The release of Version 2.4 of the Linux kernel
has been heralded as helping Linux break the en-
terprise barrier [5]. Since then, the kernel developer
community has redoubled its e�orts in improving
the scalability of Linux on a variety of server plat-
forms. All major server vendors such as IBM, HP,
SGI, Compaq, Dell and Sun not only support Linux
on their platforms, but are investing a considerable
e�ort in improving Linux's enterprise capabilities.
The Linux Technology Center (LTC) of IBM, in par-

ticular, has been a major contributor in improving
Linux kernel performance and scalability. This pa-
per highlights the e�orts of the LTC in improving
the performance and scalability of the block I/O
subsystem of the Linux kernel.

Traditionally, the kernel block I/O subsystem has
been one of the critical components a�ecting server
workload performance. While I/O hardware devel-
opment has made impressive gains in increasing disk
capacity and reducing disk size, there is an increas-
ing gap between disk latencies and processor speeds
or memory access times. Disk accesses are slower
than memory accesses by two orders of magnitude.
Consequently, servers running I/O intensive work-
loads need to use large numbers of disks and con-
trollers to provide suÆcient I/O bandwidth to en-
terprise applications. In such environments, the ker-
nel's block I/O layer faces a twofold challenge: it
must scale well with a large number of I/O devices
and it must minimize the kernel overhead for each
I/O transfer.

This paper examines how the Linux kernel's block
I/O subsystem handles these twin goals of scalabil-
ity and performance. Using version 2.4.17 of the
kernel as a baseline, we systematically identify I/O
performance bottlenecks using kernel pro�ling tools.
We propose solutions in the form of kernel patches,
all but one of which has been developed by the
authors. The performance improvements resulting
from these patches are presented using a decision-
support workload, a disk I/O microbenchmark and
pro�ling data. In brief, the I/O performance bot-
tlenecks addressed are as follows:

� Avoiding the use of bounce bu�ers: The
kernel can directly map only the �rst gigabyte

of physical memory. I/O to high memory (be-
yond 1 GB) is done through bu�ers de�ned
in low memory and involves an extra copy of
the data being transferred. Capitalizing on the
ability of PCI devices to directly address all
4GB, the block-highmem patch written by Jens
Axboe can circumvent the need to use bounce
bu�ers.

� Splitting the I/O request lock: Each I/O
device in the system has an associated request
queue which provides ordering and memory re-
sources for managing I/O requests to the de-
vice. In the 2.4 kernel, all I/O request queues
are protected by a single io request lock

which can be highly contended on SMP ma-
chines with multiple disks and a heavy I/O
load. We propose a solution that e�ectively re-
places the io request lock with per queue locks.

� Page-sized raw I/O transfers: Raw I/O,
which refers to unbu�ered I/O done through
the /dev/raw interface, breaks I/O requests
into 512-byte units (even if the device hardware
and associated driver is capable of handling
larger requests). The 512-byte requests end up
being recombined within the request queue be-
fore being processed by the device driver. We
present an alternative that permits raw I/O to
be done at a page-size granularity.

� EÆcient support for vector I/O: I/O in-
tensive applications often need to perform vec-
tor (scatter/gather) raw I/O operations which
transfer a contiguous region on disk to discon-
tiguous memory regions in the application's ad-
dress space. The Linux kernel currently han-
dles vectored raw I/O by doing a succession of
blocking I/O operations on each individual ele-
ment of the I/O vector. We implement eÆcient
support for vector I/O by allowing the vector
elements to be processed together as far as pos-
sible.

� Lightweight kiobufs: The main data struc-
ture used in raw I/O operations is the kiobuf.
As de�ned in 2.4.17, the kiobuf data structure
is very large. When raw I/O is performed on
a large number of devices, the memory con-
sumed by kiobufs is prohibitive. We demon-
strate a simple way to reduce the size of the
kiobuf structure and allow more I/O devices to
be used for a given amount of system memory.

Most of the kernel performance bottlenecks listed

above stem from the basic design of the 2.4 block
I/O subsystem which relies on bu�er heads and
kiobufs. The need to maintain compatibility with a
large number of device drivers has limited the scope
for kernel developers to �x the subsystem as a whole.
In the 2.5 development kernel, however, the chal-
lenging task of overhauling the block I/O layer has
been taken up. One of the goals of the rewrite has
been addressing the scalability problems of earlier
designs [2]. This paper discusses the new design in
light of the performance bottlenecks described ear-
lier.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of the 2.4 kernel block
I/O subsystem. The benchmark environment and
workloads used are described in Section 3. Sections
4 through 8 describe the performance and resource
scalability bottlenecks, proposed solutions and re-
sults. The newly written 2.5 kernel block layer is
addressed in Section 9. Section 10 concludes with
directions for future work.

2 Linux 2.4 Block I/O

For the purpose of this paper, our review of the 2.4
kernel block I/O subsystem will be limited in scope.
Speci�cally, it will focus on the \raw" device inter-
face, which was added by Stephen Tweedie during
the Linux 2.3 development series.

Unix r
 has traditionally provided a raw interface to
some devices, block devices in particular, which al-
lows data to be transferred between a user bu�er
and a device without copying the data through the
kernel's bu�er cache. This mechanism can boost
performance if the data is unlikely to be used again
in the short term (during a disk backup, for exam-
ple), or for applications such as large database man-
agement systems that perform their own caching.

To use the raw interface, a device binding must be
estabished via the raw command; for example, raw
/dev/raw/raw1 /dev/sda1. Once bound to a block
device, a raw device can be opened just like any
other device.

A sampling of the kernel code path for a raw open
is as follows:

sys_open

. raw_open

. . alloc_kiovec

Notice the call to alloc kiovec to allocate a kernel
I/O bu�er, also known as a kiobuf. The kiobuf is the
primary I/O abstraction used by the Linux kernel
to support raw I/O. The kiobuf structure describes
the array of pages that make up an I/O operation.

The �elds of a kiobuf structure include:

// number of pages in the kiobuf

int nr_pages;

// number of bytes in the data buffer

int length;

// offset to first valid byte of the buffer

int offset;

// list of device block numbers for the I/O

ulong blocks[KIO_MAX_SECTORS];

// array of pointers to 1024 pre-allocated

// buffer heads

struct buffer_head * bh[KIO_MAX_SECTORS];

// array of up to 129 page structures,

// one for each page of data in the kiobuf

struct page ** maplist[KIO_STATIC_PAGES];

The maplist array is key to the kiobuf interface,
since functions that operate on pages stored in a
kiobuf deal directly with page structures. This ap-
proach helps hide the complexities of the virtual
memory system from device drivers { a primary goal
of the kiobuf interface.

Once the raw device is opened, it can be read and
written just like the block device to which it is
bound. However, raw I/O to a block device must
always be sector aligned, and its length must be a
multiple of the sector size. The sector size for most
devices is 512 bytes.

Let us examine the code path for a raw device read:

sys_read

. raw_read

. . rw_raw_dev

. . . map_user_kiobuf(READ, &mykiobuf,

vaddr, len)

The result of the call to map user kiobuf() is that
the bu�er at virtual address vaddr of length len

is mapped into the kiobuf, and each entry of the
kiobuf maplist[] is set to the page structure for
the associated page of data. Note that some or all
of the user bu�er may �rst need to be paged into
memory:

. . . map_user_kiobuf

. . . . find_vma

. . . . handle_mm_fault

Once all of the pages of the data bu�er are locked
in memory, read processing continues with a call
to brw kiovec(), where for each sector-size chunk
of the data bu�er, a pre-allocated bu�er head as-
sociated with the kiobuf is initialized and passed
down to make request. make request() calls
create bounce() to create a bounce bu�er as
needed, acquires the io request lock, and uses
bu�er head information to merge/enqueue the re-
quest onto the device-speci�c request queue.

. . . . brw_kiovec(READ, num_kiobufs=1,

&mykiobuf,dev,

mykiobuf->blocks,

sector_size=512)

. submit_bh

. generic_make_request

. make_request(&request_queue,

&buff_head)

. create_bounce

. generic_plug_device

. <elevator processing>

. add_request (enqueue)

. . . . kiobuf_wait_for_io

Requests are dequeued when the scheduled
tq disk task calls run task queue() which in-
vokes generic unplug device(). In the case
of SCSI, generic unplug device() invokes
scsi request fn() which dequeues requests and
sends them to the driver associated with the
request queue/device.

. . . . run_task_queue

. generic_unplug_device

. q->request_fn (scsi_request_fn)

. blkdev_dequeue_request (dequeue)

. scsi_dispatch_cmd

The read() system call returns once the I/O has
completed; that is, after all bu�er heads associated
with the kiobuf have been processed for comple-
tion.

3 Workload and experimental setup

We have been using a decision support benchmark
and a disk I/O microbenchmark to study the perfor-
mance of block I/O. The decision support workload
(henceforth called DSW) consists of a suite of highly
complex queries accessing a 30GB database. We use
IBM DB2 r
 UDB 7.2 as the database management
system.

The disk I/O microbenchmark (henceforth called
DM) is a multi-threaded disk test. There are a total
of 32 raw devices which are mapped to 32 physical
disks. DM creates 32 processes. For the read test,
each process issues 4096 reads of 64KB each to a
raw device. The readv test issues the same number
of reads, but uses 16 iovecs of 4KB each.

For both benchmarks, the system was rebooted be-
fore each set of runs. For DSW, each set consisted of
a sequence of queries run back to back three times.
For DM, each set consisted of the read/readv runs
performed back to back three times. We took the
average of three runs for the score and CPU utiliza-
tion.

The benchmarks were run on an 8-way 700MHz
Pentium r
 III machine with 4 GB of main mem-
ory. The system used for DSW had a 2 MB L2
cache and 6 RAID controllers. The system used for
DM had a 1 MB L2 cache and 4 RAID controllers.
Each controller was connected to two storage en-
closures with each enclosure containing 10 9.1 GB,
10000 RPM drives. The large number of attached
disks allowed a high degree of parallel data access
and is typical of the environments in which decision-
support workloads are run.

Our baseline (henceforth called Baseline) was Linux
2.4.17 with Ingo Molnar's SMP timer patch applied,
plus a number of resource-related changes. In addi-
tion, readv was used by the database management
system for I/O prefetching. The four main patches
discussed in subsequent sections are block-highmem,
io request lock, rawvary and readv/writev. To mea-
sure their performance impact incrementally, we

used 4 kernels: SB for Baseline+block-highmem,
SBI for SB+io request lock, SBIR for SBI+rawvary
and SBIRV for SBIR+readv/writev.

As a �rst step towards identifying I/O bottlenecks,
the Baseline kernel was pro�led using the Kernprof
tool [4]. Table 1 shows the percentage of time spent
in the most time-consuming kernel functions run-
ning a DSW query on the Baseline kernel. We see
that bounce end io read() is the most expensive
function of non-idle time. This function is used
when the kernel performs I/O using bounce bu�ers.
The problem caused by bounce bu�ers and its res-
olution is described in the next section.

Kernel Function % Total
Time

default idle 52
bounce end io read 8

do softirq 7
tasklet hi action 6

make request 3

Table 1: Pro�ling data showing percentage of time
spent in di�erent kernel functions while running a
DSW query on the Baseline kernel.

4 Avoiding the use of bounce bu�ers

To explain the bounce bu�er problem we �rst take a
look at how the Linux 2.4 kernel addresses physical
memory. The discussion assumes an x86 architec-
ture though most of the concepts apply to all 32-bit
systems. The 4 GB address space de�ned by 32
bits is divided into two parts: a user virtual address
space (0-3GB) and a kernel virtual address space
(3-4GB). The physical memory of a system (which
is not limited to 4 GB) is divided into three zones:

� DMA Zone (0-16 MB): ISA cards with only 24-
bit DMA space use this zone.

� Normal Zone (16 MB-896 MB): Memory in
this range is directly mapped into the ker-
nel's 1 GB of virtual address space starting at
PAGE OFFSET (normally 0xC0000000).

� High Memory Zone (896 MB-64 GB): Page
frames in this zone need an explicit map-
ping into kernel virtual address space (via the
kmap() system call) before they can be used by
the kernel.

Kernel Increase CPU Utilization (%)
in MOI (%) user kernel idle

Baseline | 16 43 41
SB 37 22 71 7
SBI 78 41 37 22
SBIR 16 47 34 19
SBIRV 18 55 9 36

Table 2: Performance impact of various patches on the metric of interest (MOI) and CPU utilization for
the decisions support workload (DSW). Increases are reported w.r.t the kernel on the previous line.

Kernel I/O transfer rate CPU Idle Time
Value Increase Value Increase
(MB/s) (%) (%) (%)

Using read
Baseline 54 | 64 |
SB 133 147 21 -68
SBI 235 77 61 192
SBIR 240 2 94 55
2.5.17 kernel 243 | 97 |
Using readv
SBIR 104 | 41 |
SBIRV 241 132 94 130
2.5.17 kernel 150 | 61 |

Table 3: Performance impact of various patches on the I/O transfer rate and CPU utilization for the disk
I/O microbenchmark (DM). Increases are reported w.r.t the kernel on the previous line. Results are also
shown for the 2.5.17 kernel.

DMA operations on memory by I/O devices use
physical addresses. Since the kernel cannot ad-
dress high-memory DMA bu�ers directly while set-
ting up a bu�er for DMA, it allocates an area in
low memory called the bounce bu�er. It then sup-
plies the bu�ers physical address to the I/O device.
Consequently, data transfer between the device and
the high-memory target bu�er necessitates an extra
copy through the bounce bu�er. This degrades sys-
tem performance by using up low memory (for the
bounce bu�er) and adding the overhead of a mem-
ory copy for each I/O transfer.

The bounce bu�er is unnecessary for 32-bit PCI de-
vices, which can normally address 4 GB of physi-
cal memory directly. Such devices can access high
memory directly even though the kernel cannot.
The block-highmem patch from Jens Axboe utilizes
this property to permit high-memory DMA to occur
without the use of bounce bu�ers.

To make use of the block-highmem patch, most de-
vice drivers require a few changes which are docu-
mented in the I/O Performance HOWTO [9].

Kernel Function % Total
Time

make request 35
default idle 17

scsi dispatch cmd 4
do ipsintr 4

scsi request fn 4

Table 4: Pro�ling data showing percentage of time
spent in di�erent kernel functions while running a
DSW query on the SB kernel

The elimination of bounce bu�ers is illustrated by
Table 4 which again shows the most time-consuming
kernel functions while running DSW using the SB

kernel. Comparing the entries to those shown in
Table 1, we �nd that bounce bu�ers are no longer
being used.

The second row of Table 2 indicates the perfor-
mance improvement seen by DSW using the block-
highmem patch. The metric of interest (MOI) in-
creases by 37%. Similar trends are seen in the per-
formance of DM in Table 3 with the I/O through-

put of the read test increasing from 54 MB/s to 133
MB/s (corresponding to a 147% improvement).

Eliminating bounce bu�er usage causes another I/O
bottleneck to appear. Comparing Tables 4 and 1 we
�nd that make request is now the most expensive
kernel function and the idle time has been reduced
from 64% to around 21% under DM, 41% to 7%
under DSW. Both these changes are due to the I/O
request lock which is the next bottleneck discussed.

5 Splitting the I/O request lock

As mentioned in the last part of the previous sec-
tion, Tables 1 and 4 indicate a large fraction of time
spent in make request and a large drop in idle
time when DSW is run on SB. Using the Lockme-
ter [3] pro�ling tool allows us to investigate whether
there are any highly contended locks (spinlocks or
reader/writer locks). Table 5 shows the lockmeter
statistics for the io request lock when DSW is run
on SB. It shows that 66.2% of 8 CPUs are consumed
by spinning on the global io request lock and the
function in which the lock sees high contention also
corresponds to the most expensive kernel function
in Table 1.

The io request lock, which is a global serializa-
tion device, imposes system-wide serialization on
enqueuing block I/O requests. The request enqueu-
ing functions use the lock to protect all request
queues collectively which means that only one re-
quest can be queued at a time.

During normal I/O operations, request queues are
accessed and modi�ed by enqueuing and dequeu-
ing functions. Since multiple threads execute these
functions, queue integrity must be protected. Code
analysis shows that queuing operations on a given
queue involve access to queue-speci�c data, re-
quest list anchor (queue head), request free list (rq),
plug state (plugged), but do not require access to
data used by queuing operations on other queues.
This means that maintaining queue data integrity
does not require serialization of queuing to di�erent
queues. Queuing operations on di�erent queues are
logically independent and can execute concurrently.
Of course, multiple queuing operations to the same
queue must still be serialized.

To implement concurrent enqueuing, we replaced

io request lock in enqueuing functions with per
queue locks (request queue.queue lock). This se-
rializes enqueuing to the same queue while allowing
concurrent enqueuing to di�erent queues. With this
change dequeuing functions can no longer rely on
io request lock to serialize with enqueuing func-
tions. To restore this serialization, dequeuing func-
tions were modi�ed to acquire queue lock in addi-
tion to io request lock when accessing queues.

To minimize interlocking between dequeueing and
enqueueing functions, we added another level of
locks inside dequeueing functions. This allows us
to maintain our focus on enqueuing and avoid
the impact of further reducing the scope of the
io request lock.

When the above modi�cations to the generic block
I/O code were published for comment, the Linux
development community expressed concern about
making such major changes to the mature 2.4 ker-
nel. Since the patch modi�ed the locking structure
in code which a�ected all block I/O devices, many
viewed the code impact as undesirably pervasive.
Unforeseen impacts to other code such as IDE and
some device drivers were also pointed out. Since
SCSI con�gurations represent a signi�cant part of
our scalability goal and concurrent queuing can be
implemented for SCSI without a�ecting generic i/o
code, we decided to isolate SCSI code for our de-
velopment purposes. Fortunately, the block I/O
subsystem provides for such isolation through dy-
namically assigned I/O queuing functions stored in
the request queue and indirectly invoked as function
pointers.

To contain code impact within the SCSI subsystem,
generic enqueuing and dequeuing functions were
copied, renamed, and modi�ed for concurrent queu-
ing. The following generic block I/O (ll rw blk.c)
functions provided baselines for SCSI functions:

__make_request => scsi_make_request

generic_plug_device => scsi_plug_device

generic_unplug_device => scsi_unplug_device

get_request => scsi_get_request

get_request_wait => scsi_get_request_wait

blk_init_queue => scsi_init_queue

Concurrent queuing is activated for all devices
under an adapter driver by setting the new
concurrent queue �eld of the Scsi Host Template

structure used for driver registration. This allows

Kernel function Lock Mean Lock Lock Spin Time Number of lock
holding lock Utilization (%) Hold Time (�s) Mean (�s) % CPU acquisitions

All spinlocks 3.7 62.0 66.8 68774051
io request lock 50.2 5.2 65.0 66.2 15640659
. make request 23.5 3.8 64.0 42.8 9973270
. do ipsintr 8.3 20.0 66.0 3.1 660212
. scsi dispatch cmd 6.8 13.0 66.0 3.9 877838
. generic unplug device 4.5 8.8 65.0 3.2 835530

Table 5: Lockmeter data for io request lock with DSW on the SB kernel.

control over which drivers use concurrent queuing
and preserves original request queuing behavior by
default. Drivers which enable concurrent queuing
must protect any request queue access with queue
locks.

With the application of the io request lock patch
(IORL), the MOI of DSW improves by 78% over
the baseline SB, as is seen in row three of Table
2. The transfer rate of DM also increases sig-
ni�cantly from 133 MB/sec to 235 MB/sec (Ta-
ble 3). Note that there is a signi�cant increase
of idle time in both cases due to the reduction of
the spin time. Table 6 veri�es that the lock con-
tention seen by the io request lock has been re-
duced. scsi make request() is shown using a per-
queue lock and the aggregate contention on the per-
queue locks is reduced as well.

Kernel Function % Total
Time

default idle 41
schedule 4

ips make passthru 4
tasklet hi action 3

do softirq 3
brw kiovec 3

scsi back merge fn dc 3
scsi release bu�ers 3
scsi back merge fn 2
scsi dispatch cmd 2

end bu�er io kiobuf 2

Table 7: Kernprof data for DSW on the SBI kernel.

Table 7 lists the most expensive kernel functions for
DSW running on SBI. A signi�cant fraction of kernel
time is spent in brw kiovec() and many SCSI mid-
layer functions. One reason for that is the use of
512-byte blocks for raw I/O as explained in the next
section.

6 Raw I/O optimization patch

This section provides information on the optimiza-
tion patch that we developed to increase the block
size used for raw I/O. The patch can signi�cantly
improve CPU utilization by reducing the number of
bu�er heads needed for such operations.

As explained in Section 2, rw raw dev calls
map user kiobuf to map the user bu�er into a
kiobuf, and then invokes brw kiovec to submit
the I/O. brw kiovec breaks up each mapped page
into sector-size pieces (normally 512 bytes) and
passes them one at a time to make request. Each
sector-size piece is represented using one of the
1024 pre-allocated bu�er heads associated with
the kiobuf. Assuming a sector-size of 512 bytes,
brw kiovec would use 512 bu�er heads and invoke
make request 512 times to process a 256K raw read
or write.

make request uses the bu�er head information to
enqueue the request on the device-speci�c request
queue and returns to brw kiovec. When the lesser
of all mapped pages or KIO STATIC PAGES of the
kiobuf have been processed in this way, brw kiovec

calls kiobuf wait for io. kiobuf wait for io re-
turns after the I/O completion routine has been
called for all of the mapped bu�er heads of the
kiobuf.

While the block I/O subsystem will normally merge
bu�er heads into larger requests, there is still over-
head incurred with each bu�er head. For exam-
ple, the interrupt handler for the block device must
invoke the b end io method for each bu�er head
at I/O completion. The second column of Table 8
shows function call frequencies in a call graph trace
for 128 reads of 128KB each using a 512-byte block
size. The large number of calls to submit bh() in-
dicates the severity of the problem.

Kernel function Lock Mean Lock Lock Spin Time Number of lock
holding lock Contention (%) Hold Time (�s) Mean (�s) % CPU acquisitions
All spinlocks 2.1 15.0 13.9 63777886
io request lock 39.6 8.7 32.0 7.6 2490263
. do ipsintr 16.3 26.0 32.0 1.4 339486
. scsi unplug device 11.7 18.0 32.0 1.2 357540
. scsi dispatch cmd 8.4 13.0 31.0 1.4 363421
scsi make request 15.3 0.9 13.0 0.3 9520872

Table 6: Lockmeter data showing bene�ts of the IORL patch for DSW on the SBI kernel.

Kernel function Frequency
Baseline Baseline+rawvary

sys read 138 138
. raw read 128 128
. . rw raw dev 128 128
. . . brw kiovec 128 128
. . . . submit bh 32768 4096
. generic make request 32789 4160
. make request 32789 4160
. elevator linus merge 32659 4029
. scsi back merge fn c 32641 4013

Table 8: Reduction in frequencies of function calls using the rawvary patch for 128 reads of 128KB each.

The patch we developed can reduce 8-fold the num-
ber of bu�er heads required for a raw I/O operation.
This was accomplished by changing brw kiovec to
break up the user bu�er into sector-size pieces only
until the bu�er address is aligned on a page bound-
ary. Once properly aligned, the remainder of the
mapped pages are submitted to make request with
a block size (b size) of 4 KB instead of sector-size.
Note that the last bu�er head may have a b size

which is neither sector-size nor 4 KB depending on
the total length of the I/O request.

Since we could not practically determine whether
a given device driver can support bu�er heads
of variable-block sizes in a merged request, the
patch enables the optimization for the Adaptec,
Qlogic SCSI and IBM ServeRAID drivers only.
Other drivers can make use of the patch by setting
the can do varyio bit in the Scsi Host Template

structure before calling scsi register.

The third column of Table 8 highlights the reduction
in kernel overhead as a result of using the patch.
The number of calls to submit bh are reduced by
a factor of 8. The MOI of DSW improved by 16%
over SBI, as seen in the fourth row of Table 2. The
transfer rate of DM also increased slightly from 235
MB/sec to 240 MB/sec (Table 3). However, there

was an improvement of 55% in the idle time.

The raw I/O optimization patch, also known as
the rawvary patch, has been integrated into Andrea
Arcangeli's 2.4.18pre7aa2 kernel and Alan Cox's
2.4.18pre9-ac2 kernel.

7 EÆcient support for vector I/O

Scatter-gather I/O is needed by an application when
it needs to transfer data between a contiguous
portion of a disk �le and non-contiguous memory
bu�ers in its address space. Typically this is done
by invoking the readv()/writev() system calls and
passing an array of struct iovec entries. Each
iovec entry represents a contiguous memory bu�er
of length iov len located at iov base. This en-
try is henceforth called an iochunk since the kernel
does not de�ne a distinct name for it and the term
iovec suggests an array rather than an individual el-
ement. To simplify the discussion, we refer only to
the readv operation. For raw I/O operations, writev
di�ers mainly in the direction of data transfer.

In the 2.4 kernel, the readv system call using a

�le descriptor is implemented by calling the cor-
responding �le's readv function. When there is
no readv function exported, as is the case for raw
I/O, the kernel defaults to using repeated invoca-
tions of the �le's read function which is always de-
�ned. Each iochunk of the iovec leads to a sepa-
rate blocking read being performed. This imposes
a dual penalty on the application. It imposes the
overhead of multiple calls to various functions in
the entire I/O processing path from the top level
sys readv() down to the SCSI layer elevator and
merging functions. Worse, it serializes the I/O re-
quests seen by the low-level device driver. Since a
separate read/write is performed for each iochunk
and these calls block until I/O completes, the ker-
nel's ability to take advantage of large DMA opera-
tions is severely limited. The elevator code invoked
by the make request() function cannot merge re-
quests from di�erent iochunks and hence the SCSI
device driver cannot create large scatter-gather lists
for the controller.

To reduce this ineÆciency, we created a patch de�n-
ing readv and writev functions for raw devices. The
functions operate in two phases while processing an
iovec. In the �rst phase, they map the pages of
several iochunk bu�ers into a single kiobuf. The
number of pages mapped to a single kiobuf is lim-
ited by the KIO STATIC PAGES limit (which is 65
when the system page size is 4 KB). Once this limit
is reached (or if the entire iovec has been mapped),
brw kiovec() is invoked to submit the I/O repre-
sented by the kiobuf. As explained in Section 2,
brw kiovec() is a blocking function that returns
only when the corresponding I/O is complete or if
there is an error. The two phases are repeated until
all iochunks of the iovec are processed.

The patch relies upon one important modi�cation to
struct kiobuf. As explained in Section 2, struct
kiobuf has only one o�set and length �eld. The
o�set �eld represents the o�set into the (virtual)
memory bu�er. When the pages of multiple memory
bu�ers are mapped in to the same kiobuf, we need
a per-page o�set and length information. We mod-
i�ed struct kiobuf to add this information using
the following structure:

struct pinfo

{

int poffset[KIO_STATIC_PAGES];

int plen[KIO_STATIC_PAGES];

};

struct kiobuf

{

:

:

struct pinfo * pinfo;

}

There are other approaches to providing
readv/writev support. In an earlier attempt,
we tried to map an iovec onto a kiovec consisting
of multiple kiobufs. However, that approach
increased memory consumption since struct

kiobuf is quite heavyweight and also because
the brw kiovec() function only submits I/O for
KIO STATIC PAGES one at a time. Mapping one
iochunk onto one kiobuf would have resulted in
wasted pointers in the map array without increas-
ing the granularity at which I/O was submitted
to the lower layers. Our current approach �ts in
well with the 2.4 kernel's practice of using only
one kiobuf per �le. The issue of the heavyweight
struct kiobuf is discussed in Section 8 though the
changes shown there do not warrant reexamining
our choice to map multiple iochunks into a single
kiobuf.

Using the readv/writev patch improves the MOI of
DSW by 18% (Table 2) and the I/O transfer rate of
DM from 104 MB/s to 241 MB/s (Table 3). CPU
utilization also decreases signi�cantly for both cases.

8 Lightweight kiobufs

In the 2.4.17 kernel, a kiobuf is allocated for each
raw device open. The allocated kiobuf is saved in
the f iobuf �eld of the file object for the device
special �le and is used for doing reads/writes on the
raw device. Each kiobuf is 8792 bytes in size and
is allocated from vmalloc() space which is gener-
ally 128 MB. Middleware such as database managers
often keep a large number of �les open. For raw
I/O, the number of open calls generally scales with
the number of devices (which are accessed through
device special �les). In such cases, a heavyweight
kiobuf is a drain on the kernel's low memory in gen-
eral and vmalloc space in particular.

To enable a large number of raw devices to be
opened simultaneously, we modi�ed the kiobuf

structure to reduce its memory footprint. Much of
the memory consumed by a kiobuf is due to the two
arrays:

struct buffer_head * bh[KIO_MAX_SECTORS];

unsigned long blocks[KIO_MAX_SECTORS];

With KIO MAX SECTORS being 1024, these arrays
consume 8192 bytes.

We changed the kiobuf structure as follows:

1. The bu�er head array bh was replaced by a
linked list. To link the various bu�er heads of a
kiobuf together, we used the b next free �eld
of struct bu�er head. This �eld is not used in
bu�er-head processing in the raw I/O path.

2. The blocks array was replaced by a single num-
ber. Normally, the blocks array contains the
physical disk block numbers corresponding to
the logical blocks of a �le. For accesses which
don't go through a �lesystem, the logical and
physical disk blocks are the same. Hence, for
raw I/O, the blocks array contains sequential
numbers. We replaced the blocks array by a
single number indicating the starting disk block
and modi�ed the code doing raw I/O to gener-
ate the remaining sequence of disk block num-
bers.

Together these modi�cations reduced the size of the
kiobuf to 608 bytes and allowed them to be allocated
using kmalloc() instead of vmalloc().

A further reduction in the memory footprint of the
kiobuf was enabled by the use of the rawvary patch
described in Section 6. Since I/O is done 4KB at
a time, a kiobuf needs only KIO STATIC PAGES (65)
bu�er heads instead of KIO MAX SECTORS (1024) to
represent the maximum I/O that can be done using
a single kiobuf.

9 2.5 changes - tackling the root of
the problem ?

In part, the block layer rewrite in 2.5 was motivated
by some of the well known shortcomings of the 2.4

block layer that we came across in the earlier sec-
tions. Of major concern was the suboptimal per-
formance and resource overhead in the case of large
I/O requests, I/O on high memory addresses, and
I/O operations that do not originate directly from
the bu�er cache like raw/direct I/O and page I/O.

Most of these problems stemmed from the use of the
bu�er head as the unit of I/O at the generic block
layer, and the basic limitations on the size and na-
ture of I/O bu�ers that could be represented by a
single bu�er head. It could only be a contiguous
chunk at a virtually mapped address, of size one
blocksize unit, which could not exceed a page and
had to be aligned at a block boundary (as per the
block size used). This led to the described ineÆcien-
cies in handling large I/O requests and readv/writev
style operations, as it forced such requests to be
broken up into small chunks so that they could be
mapped to bu�er heads before being passed on one
by one to the generic block layer, only to be merged
back by the I/O scheduler when the underlying de-
vice is capable of handling the I/O in one shot. Also,
using the bu�er head as an I/O structure for I/Os
that didn't originate from the bu�er cache unneces-
sarily added to the weight of the descriptors which
were generated for each such chunk.

At the same time, one of the good things about the
original design was that splitting and merging of
requests was a simple matter of breaking or chaining
pointers, without requiring any memory allocation
or move.

In the context of raw or direct I/O, a second as-
pect of concern was the weighty nature of the higher
level kiobuf data structure as discussed in earlier
sections. One of the shortcomings of the kiobuf is
that a single kiobuf can represent only a contigu-
ous user address range, which makes it unsuitable
for user space memory vectors of the form supplied
by readv/writev. While arrays of kiobufs, namely
kiovecs, are de�ned, they are too heavyweight for
use in readv/writev.

Another crucial issue addressed in the rewrite
was the matter of the single global I/O request
lock bottleneck, especially in the case of indepen-
dent/parallel I/Os to multiple disks.

9.1 The origin of BIO

The solution implemented in 2.5 by Jens Axboe [2]
addresses these ineÆciencies at a fundamental level
by de�ning some new data structures. A
exible
structure called BIO has been created for the block
layer instead of using the bu�er head structure di-
rectly, thus eliminating any associated baggage and
restrictions. The abstraction is sector oriented and
is unaware of �lesystem block sizes.

The BIO structure uses a generic vector represen-
tation pointing to an array of tuples of <page,

offset, len> to describe the I/O bu�er and has
various other �elds describing I/O parameters and
state that needs to be maintained for performing the
I/O. The core memory vector representation is capa-
ble of describing a set of non-page aligned fragments
in a uniform manner across various layers includ-
ing zero copy network I/O, and kernel asynchronous
I/O [1]. This makes it possible for the same descrip-
tor to be passed across subsystems and be useful for
things like streaming I/O from network to disk and
vice-versa. Such a descriptor can directly refer to
user space bu�ers in a process context independent
way, and forms an I/O currency similar to that pro-
posed in [7].

The new scheme enables large, as well as vectored
I/Os, to be described as a single unit within the
limits of the device capabilities and is adequate
for specifying high memory bu�ers as well since it
doesn't require a virtual address mapping. The un-
derlying DMA mapping functions have been mod-
i�ed to work with this representation. Bounce
bu�ers become necessary only where the device does
not support I/O into high memory bu�ers. In sit-
uations where the driver needs to access the bu�er
by virtual address, it performs a temporary kmap
(e.g. if falling back to PIO in IDE).

A low level request structure may consist of a chain
of BIOs (potentially arising from multiple sources
or callers) for a contiguous area on disk, a concept
which retains some of the goodness of the origi-
nal design in terms of ease of request merging, and
treatment of individual completion units. The BIO
structure maintains an index into the vector to help
keep track of which fragments have been transferred
so far, in case the transfer or a subsequent copy hap-
pens in stages. Notice also, that potentially, a single
entry in the vector could describe a fragment greater
than a page size, i.e. across contiguous physical (or

perhaps more accurately, logical) pages. Splitting
an I/O request involves cloning the BIO structure
and adjusting the indices to cover the desired por-
tions of the original vector.

Using a separate structure introduces a level of al-
location and setup in some cases as a BIO has to be
constructed for each I/O (e.g. rather than directly
utilizing a bh in the case of bu�ered I/O). Typically
BIOs are allocated from a designated BIO mem-
pool, where mempool refers to Ingo Molnar's new
memory pool infrastructure in 2.5. The allocation
scheme is designed to avoid deadlocks as in a sce-
nario when the I/O in question is a writeout issued
under memory pressure. A caller avoids possibilities
of holding on to a BIO without initiating any action
(like starting low level I/O) that would eventually
recycle it back to the pool. The situation gets tricky
if further BIO allocations become necessary in or-
der to proceed with the request (e.g. a bounce BIO
in situations where the device doesn't support high-
mem I/O, or BIO allocations required for splitting
the I/O in the case of lvm/md/evms). To avoid any
possibility of a deadlock, multiple allocations held
at a time from the same pool by a thread ought
to be atomic or pipelined. Alternatively, the allo-
cations could be spread across multiple pools in an
established order.

9.2 Elimination of IORL

Another major improvement in 2.5 is the removal
of the global I/O request lock present in 2.4. In-
stead, every queue is associated with a pointer to
a lock, which is held during queuing. This enables
per-queue locks or shared locks across queues de-
pending on the level of concurrency supported by
the underlying mid/driver layers. The SCSI mid-
layer, for example, sets the lock pointer to the same
per adapter value for all request queues associated
with the devices connected to a given host adapter.
Unlike our patched 2.4 SCSI mid-layer which se-
rializes enqueuing per device, this locking scheme
serializes at a coarser per adapter granularity.

A notion of command pre-building outside of the
queue lock and ahead of request processing by the
device has been considered for its potential to im-
prove throughput and interrupt responses, but it
has not been explored entirely. Choosing the right
moment to prebuild is not trivial - done too early it
would require rebuilding on every subsequent merge,

done too late, e.g. at the time of actually schedul-
ing a request, it takes up cycles in request processing
context which dilutes the desired e�ect.

9.3 Better per-queue tuning

Improved modularization at the generic block level
now enables better per-queue level tuning and con-
sideration of higher level attributes for I/O sched-
uler performance under speci�c con�gurations and
workloads. There is support for eÆcient I/O barri-
ers in cases where corresponding hardware support
exists, which could be useful for transaction oriented
I/O.

9.4 A job to do - utilizing the frame-
work

At this point, work remains to be done in terms of
modifying higher levels in the OS to make optimum
use of this new infrastructure. Preliminary experi-
ments running DM show that the 2.5.17 kernel out-
performs SBIR for reads but does worse than SBIRV
when readv is used (Table 3. This is consistent with
the current state of implementation of the new block
layer where the readv path has not seen the bene-
�ts of the bio structure. In fact, we can even ex-
pect a slight degradation for small I/Os because the
memory vector structure is inherently a little more
complex than the simple virtually mapped bu�er in
2.4. For small single segment I/O the drivers end
up with an added check for the end of the array, and
many of the BIO �elds become almost redundant.

Therefore, intelligent pre-merging at higher levels
makes sense in this context. A 1:1 mapping between
bu�er heads and BIOs is not quite eÆcient. There
is ongoing work to rewrite some of the �lesystem in-
terfaces to move in this direction. Andrew Morton's
multi-page read and writeout patches [8] assemble
large BIOs for pagecache pages (for as many cor-
responding blocks that are contiguous on disk) and
submit them directly to the request layer, bypassing
bu�er heads altogether.

From the perspective of raw/direct I/O, which are
the main areas of consideration in the current pa-
per, the relatively heavyweight kiobuf infrastruc-
ture would have to be replaced by something like
the lighter kvec data structures in Ben LaHaise's

asynchronous I/O patches [6], which can support
readv/writev operations eÆciently.

A kvec is pretty close to a bare abstraction of a
memory vector array of the form used in a BIO, each
tuple of the vector being referred to as a kveclet.
It is usually more useful to pass around a kvec cb

structure which refers to a kvec and its associated
callback data for I/O completion purposes.

struct kveclet {

struct page *page;

unsigned offset;

unsigned length;

}

struct kvec {

unsigned max_nr;

unsigned nr;

struct kveclet veclet[0];

}

struct kvec_cb {

struct kvec *vec;

void (*fn)(...);

void *data;

}

A kvec can be mapped to BIO structures for
block I/O and similarly to equivalent skb fragment

structures in the case of network I/O. A single kvec
may be split across multiple BIO structures (each
pointing to the corresponding section of the kvec),
each of which acts as a distinct completion unit
when more than one low level device requests are in-
volved in serving the I/O. A large user space bu�er
(especially in the case of vectored I/O), might even
be mapped to a big kvec a section at a time, and ap-
propriately pipelined for I/O through multiple BIO
requests to potentially enhance throughput and la-
tencies for partial completions.

In the case of direct I/O, extents of non-contiguous
blocks would have to be mapped to separate BIO
units.

There also has been some discussion on the max-
imum size of BIOs that may be pushed down to
the block layer, from the perspective of avoiding
chopping up an I/O unless it violates the under-
lying device limits. Because this decision is more
complex than just a matter of absolute size, and
may even depend on request queue state, Linus

Torvalds has suggested that drivers could supply a
grow bio helper function to handle this. Further
complications arise in the case of layered drivers like
lvm/md/evms. Andrew Morton has proposed a dy-
namic get max bytes interface exported by drivers
(cascaded down layered drivers if required), to help
build up appropriately sized BIOs to avoid splitting
by the lower layers.

Observe that in 2.4 with �xed size (small) bu�er
heads, the approach was to never split a bu�er, but
include it as part of the request or create a new re-
quest depending on whether it could be �tted within
the limits allowable for the device in question. In
2.5, the BIO represents larger variable sizes, hav-
ing variable number of segments. Such a simplistic
approach could result in underutilization of request
slots when merging I/Os from di�erent sources. If a
bu�er exceeds the request size which the device can
handle, it breaks up the request. However, splitting
up a BIO for a correct �t requires an additional
memory allocation. Some points of caution with
regard to such allocations at the block layer level
have been discussed in an earlier subsection. This
is why the question of constructing BIOs of right
size arises.

A suitable solution would have to take into account
that splitting is expected to be relatively infrequent.
Since the general direction is to move towards merg-
ing early, get max bytes() could turn out to be a
useful hint even for the corresponding clustering de-
cisions. At the same time, it may not always be fea-
sible or eÆcient in practice to absolutely guarantee
elimination of the need to split I/Os. Thus, a provi-
sion for splitting may be required with due caution
possibly with a structured use of multiple (layered)
mempools and pipelined piecewise submissions to
avoid deadlocks.

10 Conclusion and Future Work

In this paper we have highlighted some of the scala-
bility and performance limitations of the 2.4 Linux
kernel's block I/O subsystem. Using a decision-
support benchmark that is representative of real-
world enterprise workloads, we have shown that the
2.4.17 kernel sees I/O related performance bottle-
necks when large I/O's are done on raw devices. We
systematically investigated these bottlenecks and
proposed solutions (as kernel patches) to allevi-

ate them. As a result of using these patches, the
decision-support workload sees an 233% improve-
ment in its metric of interest. The bene�ts of these
patches, all but one of which were written by the
authors, are further demonstrated through a disk
I/O microbenchmark and pro�ling data.

Most of the problems that we demonstrated are seen
because of the use of the bu�er head and kiobuf
data structures. The new block I/O layer being
written for the 2.5 kernel looks very promising as
it addresses almost all the problems outlined here.
Much work remains to be done to eÆciently utilize
the new data structures introduced in 2.5. We will
continue to actively participate in the kernel com-
munity's e�orts to improve the performance of both
the 2.4 and 2.5 kernels for enterprise workloads.

11 Acknowledgments

We would like to thank the many people on
the lse-tech@lists.sourceforge.netmailing list
who provided us with valuable comments and sug-
gestions during the development of these patches. In
particular, we would like to thank Ruth Forester for
helping resolve numerous issues with the decision-
support workload and Helen Pang for collecting
data on the disk I/O microbenchmark. We also
appreciate the excellent DB2 performance analysis
provided by John Tran, Karen Sullivan and James
Cho.

This work was developed as part of the
Linux Scalability E�ort (LSE) on SourceForge
(sourceforge.net/projects/lse). All the
patches mentioned in this paper can be found in
the \I/O Scalability Package" at the LSE site.

This work represents the view of the authors, and
does not necessarily represent the view of IBM.

References

[1] Suparna Bhattacharya. Design Notes
on Asynchronous I/O (aio) for Linux.
http://lse.sourceforge.net/io/aionotes.txt.

[2] Suparna Bhattacharya. Notes on
2.5 Block I/O Layer Changes.
http://lse.sourceforge.net/io/bionotes.txt.

[3] R. Bryant and J. Hawkes. Lockmeter: Highly-
Informative Instrumentation for Spin Locks in
the Linux Kernel. In Proc. Fourth Annual Linux

Showcase and Conference, Atlanta, Oct 2000.

[4] John Hawkes et. al (Silicon Graph-
ics Inc.). Kernprof. Available at
http://oss.sgi.com/projects/kernprof/index.html.

[5] InfoWorld Test Center K. Railsback.
Linux 2.4 breaks the enterprise barrier.
http://www.infoworld.com/articles/tc/xml/01/
01/15/010115tclinux.xml.

[6] Benjamin LaHaise. Kernel Asynchronous I/O
Patches. http://www.kvack.org/ blah/aio.

[7] Larry McVoy. The Splice I/O Model.

[8] Andrew Morton. Multi-page
writeout and readahead patch.
http://www.zip.com.au/ akpm/linux/patches/
2.5/2.5.8.

[9] Sharon Snider. I/O Performance HOWTO.
http://www.tldp.org/HOWTO/IO-Perf-
HOWTO/index.html.

Trademarks

The following terms are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States, other countries, or
both:

IBM, DB2, ServeRAID

Pentium is a trademark of Intel Corporation in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Other trademarks are the property of their respec-
tive owners.

